Estimating and projecting COVID-19 Mortality Impact in Asia

Dr. Jessica Dang Research Assistant Professor Nanyang Technological University

August 17, 2023

- e-Carter model
- o-parameter-level model
- rameter estimation
- onte Carlo simulation
- code and tables

Motivation

Background

Focus on Asia Forward-looking view

• Study all-cause mortality experience of general population in 5 Asian countries

• Forecast future mortality based on longterm trend and COVID-19 mortality impact

Actuarial context Tool and inspiration

• Evaluate impact relevant to life insurers and policymakers

• Findings to serve as inspiration and models to serve as tool for insurers and policymakers to evaluate own impact

Country (region) considered

Background

- General population mortality data in these countries/regions since 1970s/1980s
- Singapore, Japan, Korea, England & Wales: 2020 2022 pandemic data
- Malaysia: 2020 2021 pandemic data
- Indonesia: 2020 pandemic data
- England & Wales included for comparison purpose

Age-standardized mortality rate

- A blended mortality rate of a population based on a pre-defined age mix
- Allows for comparison of overall mortality rate without noise from age mix

Period life expectancy

Cohort life expectancy

-
- Indication of expected future lifetime of the cohort
- Assumption of future mortality rate required

Expected future lifetime for a *hypothetical* cohort that follows the age-specific mortality rates as

Expected future lifetime for a real cohort that follows the natural evolution of mortality rate

- Commonly referred to in published statistics and news
- of a certain time
- Static, point-in-time view of overall mortality level
- Assumes no mortality improvement in future

Statistics for describing mortality risk

7

Pre-pandemic mortality trend

Age-standardized mortality rate

- Long-term downward trend
- Distinctive levels of mortality rate by country
- Steep decrease in Singapore and Korea
- Deceleration of mortality improvement in Japan
- Implication for forecasting mortality improvement

Mortality trend during pandemic

Factors impacting mortality during COVID

- Acute COVID-19 infection
- Delay/ avoidance of medical care, strain on the health care system
- Behavioural issues during the pandemic
- Reduction in other transmissible diseases
- Fewer road traffic and occupational accidents, reduced air pollution

Period life expectancy at age 30

Impact from COVID-19 pandemic

- Singapore, Japan and Korea: small gain in mortality followed by moderate deterioration in mortality
- England & Wales: sizable decrease in life expectancy followed by small recoveries, but still not back to prepandemic level
- Indonesia and Malaysia: significant decrease in life expectancy although Malaysia had mortality gain in 2020

Period life expectancy at age 30

* Results as of 2020.

** 2022 actual based on simulation.

Actual vs. pre-pandemic expected

- Singapore, Japan and Korea: ~1 year difference actual vs. expected, worth ~5 years of mortality improvement
- England & Wales: ~1 year difference actual vs. expected but worth ~12 years of mortality improvement due to slow rate of improvement in recent years
- Indonesia and Malaysia: ~2 year difference actual vs. expected but worth about two decades of mortality improvement due to slow rate of improvement

Excess mortality in pandemic

Age-specific excess mortality in pandemic

Excess mortality as % of expected mortality based on pre-pandemic trend

- Different impact by country and by year
- Some mortality gain in 2020/2021 in Singapore, Japan, Korea and Malaysia
- Younger ages had worse %-wise excess mortality than older ages in many countries
- Japan experienced the least impact overall

Various studies on estimated excess deaths

- Excess death estimates highly dependent on measurement of expected deaths
- Many models estimate both actual and expected
- Lancet paper groups 2020 and 2021 result together
- Results from GAIP study are reasonably close to WHO's estimate
- The Economist estimates very significant excess deaths in Indonesia in 2021 and 2022

Number of excess deaths in 000's

Excess deaths vs. healthcare access and quality

- - Indication of negative correlation between excess deaths and HAQ index
	- England & Wales seems to be an outlier
	- Not adjusted for different age mix
	- Only a preliminary exploration, study at bigger scale needed to draw any conclusion

Average annual excess deaths per 1,000 population vs. Healthcare Access and Quality (HAQ) index

Long-term mortality impact

Simulation to forecast long-term mortality impact

- Scenario 1: COVID-19 mortality shock **disappears completely and immediately**, no new pandemic occurs
- Scenario 2: COVID-19 mortality shock **continues indefinitely**, no new pandemic occurs
- Scenario 3: COVID-19 mortality shock **subsides gradually and indefinitely**, no new pandemic occurs
- Scenario 4: COVID-19 mortality shock **subsides gradually but only for 4 years**, no new pandemic occurs
- Scenario 5: **Scenario 3**, plus a **new pandemic** occurs with a **probability of 0.01** each year
- Scenario 6: **Scenario 3**, plus a **new pandemic** occurs with a **probability of 0.05** each year

Monte Carlo simulation of future mortality rates under 6 scenarios

Simulation to forecast long-term mortality impact

- Under each scenario, generate 10,000 Monte Carlo simulation sample paths of death rates
- Calculate statistics such as life expectancy for each sample path

Monte Carlo simulation of future mortality rates under 6 scenarios

Long-term mortality impact

Period life expectancy at age 30 in year 2032

- Indication of overall mortality level in 2032
- Scenarios assuming arrival of new pandemic (scenario 5 and 6) show significant left-tail risk (shorter life expectancy)
- Scenario 3-6 are plausible given historical long-term volatility: first and third quartile in Scenario 3-6 are within the data range of Scenario 1.
- Variation between scenarios dictated by magnitude of COVID mortality shock in each country

E&W

Cohort life expectancy at age 30 in year 2032

Long-term mortality impact

- Indication of future lifetime of age 30 in 2032
- Less variation among scenarios than period life expectancy due to pandemic mortality shock gradually absorbed by future mortality improvement
- Larger variance than period life expectancy due to randomness in future mortality improvement
- Significant longevity risk in Singapore, Japan, Korea and E&W

Cohort life expectancy at age 65 in year 2032

Long-term mortality impact

• Smaller variance than cohort life expectancy at age 30 due to much shorter projection horizon

Implications, recommendations and limitations

- Great variation in COVID-related mortality shock and long-term mortality trend among different countries
- Mortality trend can change rather quickly in Asian countries so close monitoring is crucial
- Embrace new technology and collaboration

Experience monitoring and data collection

Mortality modelling

- The stochastic mortality model presented in this study can be used to quantify and estimate COVID-related impact
- Extension can be made to quantify other short-term mortality shocks

- Mortality impact during COVID may have significant profitability impact
- Example: % change in EV at YE 2022 of Term 20 life insurance contract of age 45

Risk Management

- Need for studying profitability impact under different scenarios
- Incorporate insights from COVID-19 impact into scenario analysis and stress testing
- Maintain a diverse portfolio
- Improve access and quality to healthcare
- Longevity risk remains critical

Risk Management

- Mortality protection gap: material impact on mortality of younger age group in Indonesia and Malaysia
- Longevity protection gap: long life expectancy in developed economies in Asia
- Health protection gap: better health protection likely be correlated with better mortality outcome during pandemic

Protection gap

Morbidity impact

- Impact from the pandemic and long-COVID
- Future study with industry collaboration necessary

Limitations

• Limitation of our stochastic mortality model: deterministic mortality shock and identical pattern in future pandemics

• Limitation of modelling for quantifying excess deaths: not suitable for estimating excess deaths in small time interval

-
-
- Study based on population rather than insured lives data
- Study based on data up to 2022, longer-term monitoring necessary
- Morbidity impact not considered

- $m_{x,t}$ denotes central death rate at age x in year t
- The model: $\log m_{x,t} = a_x + b_x k_t + \xi_{x,t}$
- k_t follows a random walk with drift such that $k_t = k_{t-1} + \mu + \epsilon_t$, $\epsilon_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$
- a_x : long-term average log central death rate of age x over data period
- $\bullet\;\;k_t$: captures overall level of mortality improvement over time, a.k.a. the mortality index
- b_x : reflects age x's sensitivity to changes in k_t
- Constraints to ensure uniqueness of parameter value: $\sum_{x} b_x = 1$, $k_t = 0$

- Concise form with intuitive interpretation
- Captures overall long-term trend, age-specific characteristic and random fluctuation
- Does not capture any shock
- Does not capture any cohort effect
- Two-stage parameter estimation process

Estimated a_x with pre-COVID data

Estimated b_x with pre-COVID data

Estimated k_t with pre-COVID data

Two-parameter-level model

- alike effects." Annals of Actuarial Science 16.3 (2022): 453-477.
- The model: $\log m_{x,t} = a_x + b_x k_t + c_{x,t} \pi_t \mathbf{1}_{t \in \mathcal{T}}$
- $\mathbf{1}_{t \in \mathcal{T}}$ is an indicator function with value of 1 if year t is a pandemic year
- π_t captures time specific overall mortality shock in pandemic
- $c_{x,t}$ captures age specific mortality impact, which also varies by time, relative to π_t
- Constraints to ensure uniqueness of parameter value: $\sum_{x} b_x = 1$, $k_t = 0$, $\sum_{x} c_{x,t} = 1$.

• Zhou, Rui, and Johnny Siu-Hang Li. "A multi-parameter-level model for simulating future mortality scenarios with COVID-

Age-specific excess mortality in pandemic

Excess mortality as % of expected mortality based on pre-pandemic trend

- Different impact by country and by year
- Some mortality gain in 2020/2021 in Singapore, Japan, Korea and Malaysia
- Younger ages had worse %-wise excess mortality than older ages in many countries
- Japan experienced the least impact overall

Parameter estimation

- Maximize penalized quasi-likelihood (PQL), $g(\theta)$, for estimating $\theta \in \{a_x, b_x, k_t, c_{x,t}, \pi_t, \mu\}$
- Maximize approximate profile quasi-likelihood function, $h(\theta)$, for estimating $\theta \in \{\sigma\}$
- Iterative process using Newton's method
- PQL penalizes deviation from a multivariate normal distribution of k
- Capable of disentangling COVID mortality shock and fluctuation in long-term mortality improvement

Parameter estimation

Algorithm for parameter estimation

initialize: Initialize parameter values as

- 1. Set $a_{x_{\scriptsize{prev}}}$ = estimated a_{x} using the Lee-Carter model;
- 2. Set $b_{x_{prev}} = c_{x,t_{prev}} =$ estimated b_x using the Lee-Carter model;
- 3. Set $k_{t_{prev}} = \pi_{t_{prev}}$ =estimated $\,k_t$ using the Lee-Carter model;
- 4. Set μ_{prev} = estimated μ using the Lee-Carter model;
- 5. Set σ_{prev} = estimated σ using the Lee-Carter model;

$$
6. \delta = \eta = 1;
$$

- 7. Update $g_{prev}(\theta) \leftarrow g(\theta)$;
- 8. Update $h_{prev}(\theta) \leftarrow h(\theta);$

while $\delta > 0.0001$ do

while $\eta > 0.0001$ do for $\theta \in \{a_x, b_x, k_t, c_{x,t}, \pi_t, \mu\}$ do Update $\theta_{curr} \leftarrow \theta_{prev}$ – ∂ $\frac{\partial}{\partial \theta} g(\theta_{prev}$ $\overline{\partial^2}$ $\frac{\sigma}{\partial \theta^2} g(\theta_{prev}$ **end** Update $\eta = g(\theta_{curr}) - g_{prev}(\theta)$ Update $\theta_{prev} \leftarrow \theta_{curr}$ Update $g_{prev}(\theta) \leftarrow g(\theta_{curr})$ \blacktriangleright maximize $g(\theta)$

end

Update $\sigma_{curr} \leftarrow \sigma_{prev}$ – ∂ $\frac{\sigma}{\partial \sigma} h(\sigma_{prev}$ $\overline{\partial^2}$ $\frac{\sigma}{\partial \sigma^2} h(\sigma_{prev}$ Update $\delta = h(\sigma_{curr}) - h_{prev}(\sigma)$ Update $\sigma_{prev} \leftarrow \sigma_{curr}$ Update $h_{prev}(\sigma) \leftarrow h(\sigma_{curr})$ \blacktriangleright maximize $h(\theta)$

end

Parameter estimation

Estimated parameters

Simulation using two-parameter-level model

• Simulation model

$$
\log m_{x,t} = a_x + b_x k_t + \sum_{i} \left(c_{x,t}^{(i)} \pi_t^{(i)} \mathbf{1}_{T_1^{(i)} \le t \le T_k^{(i)}} + c_{x,T_k}^{(i)} \pi_{T_k}^{(i)} \gamma^{g(t,T_k^{(i)})} \mathbf{1}_{t > T_k^{(i)}} \right)
$$
\n
$$
\text{pandemic phase} \qquad \text{endemic phase}
$$
\n
$$
\text{where } \mathbf{1}_t = \begin{cases} 1 \text{ with probability } p \\ 0 \qquad \text{otherwise} \end{cases} \text{for any } t > T_k^{(1)}
$$

Simulation using two-parameter-level model

Algorithm for simulation under each scenario

 $\textbf{input:} \text{ Estimated values of } a_x, \, b_x, \, k_{t_n}, \, \, c_{x,t_n}, \, \pi_{t_n}, \, \mu, \, \sigma \text{ and } p \; ;$

: number of simulation samples;

: number of years to forecast in simulation;

initialize: Set $\mu = [\mu, 2\mu \dots, T\mu]$;

Set the (i, j) -th entry of the $T \times T$ variance-covariance matrix V to be $V_{ij} = (\min(i, j) - 1)\sigma^2$;

for $i = 1$ to N **do**

Randomly sample z_i from $MVN(\mu, V)$

Set $\mathbf{k}_i = [k_{t_n+1}, k_{t_n+2}, ..., k_{t_n+T}]' = k_{t_n} + \mathbf{z}_i;$

Randomly sample $\mathbf{1}_{i,t}$ for $t = t_n + 1, ..., t_n + T$ from i.i.d. Bernoulli (p) ;

Compute $\log m_{x,t}$ for $t = t_n + 1, ..., t_n + T$;

Compute $q_{x,t}$ for $t = t_n + 1, ..., t_n + T$;

Compute mortality indices for $t = t_n + 1, ..., t_n + T$;

end

Forecast long-term trend of mortality improvement

- Long-term trend of mortality improvement: dictated by parameter μ in the model
- Steep decrease in mortality rates in Korea and Singapore since 1980's, but how will such trend evolve in future?
- Deceleration in Japan's mortality improvement after 1990's
- national population
- Example of countries "avant-garde" status: Sweden since 1960's, Japan since 1990's
- In simulation study: for Singapore, Japan and Korea, forecast with μ estimated from Japan's experience since 1990

• "Avant-garde" status in mortality improvement: overall level of mortality equals the minimum achieved at that time by any

Forecast long-term trend of mortality improvement

Period life expectancy at birth

Forecast long-term trend of mortality improvement

Period life expectancy at age 30

Appendix

Useful links

• <https://www.gaip.global/wp-content/uploads/2023/07/COVID-19-Mortality-Impact-in-Asia-.pdf>

Living Lab report

Tools: R codes and tables

• <https://www.gaip.global/library-resource/tools-to-assess-mortality-impact-of-covid-19/>

