Estimating and projecting COVID-19 Mortality Impact in Asia

Dr. Jessica Dang Research Assistant Professor Nanyang Technological University

August 17, 2023

1.	Background	7. Stoch
2.	Pre-pandemic mortality trend	• Lee
3.	Mortality trend during pandemic	• Two
4.	Excess mortality in pandemic	• Par
5.	Long-term mortality impact	• Mo
6.	Implications, recommendations	• R c
	and limitations	

nastic mortality models

- e-Carter model
- vo-parameter-level model
- rameter estimation
- onte Carlo simulation
- ode and tables

Background

Motivation

Focus on Asia

• Study all-cause mortality experience of general population in 5 Asian countries

Actuarial context

• Evaluate impact relevant to life insurers and policymakers

Forward-looking view

• Forecast future mortality based on longterm trend and COVID-19 mortality impact

Tool and inspiration

• Findings to serve as inspiration and models to serve as tool for insurers and policymakers to evaluate own impact

Background

Country (region) considered

- General population mortality data in these countries/regions since 1970s/1980s •
- Singapore, Japan, Korea, England & Wales: 2020 2022 pandemic data •
- Malaysia: 2020 2021 pandemic data
- Indonesia: 2020 pandemic data
- England & Wales included for comparison purpose

Statistics for describing mortality risk

Age-standardized mortality rate

- A blended mortality rate of a population based on a pre-defined age mix
- Allows for comparison of overall mortality rate without noise from age mix

Period life expectancy

- Commonly referred to in published statistics and news
- of a certain time
- Static, point-in-time view of overall mortality level
- Assumes no mortality improvement in future

Cohort life expectancy

- Indication of expected future lifetime of the cohort
- Assumption of future mortality rate required

Expected future lifetime for a *hypothetical* cohort that follows the age-specific mortality rates as

Expected future lifetime for a *real* cohort that follows the natural evolution of mortality rate

Pre-pandemic mortality trend

Age-standardized mortality rate

- Long-term downward trend
- Distinctive levels of mortality rate by country
- Steep decrease in Singapore and Korea
- Deceleration of mortality improvement in Japan
- Implication for forecasting mortality improvement

Mortality trend during pandemic

Factors impacting mortality during COVID

- Acute COVID-19 infection
- Delay/avoidance of medical care, strain on the health care system
- Behavioural issues during the pandemic
- Reduction in other transmissible diseases
- Fewer road traffic and occupational accidents, reduced air pollution

Period life expectancy at age 30

Impact from COVID-19 pandemic

- Singapore, Japan and Korea: small gain in mortality followed by moderate deterioration in mortality
- England & Wales: sizable decrease in life expectancy followed by small recoveries, but still not back to prepandemic level
- Indonesia and Malaysia: significant decrease in life expectancy although Malaysia had mortality gain in 2020

Period life expectancy at age 30

Actual vs. pre-pandemic expected

* Results as of 2020.

** 2022 actual based on simulation.

- Singapore, Japan and Korea: ~1 year difference actual vs. expected, worth ~5 years of mortality improvement
- England & Wales: ~1 year difference actual vs. expected but worth ~12 years of mortality improvement due to slow rate of improvement in recent years
- Indonesia and Malaysia: ~2 year difference actual vs. expected but worth about two decades of mortality improvement due to slow rate of improvement

Excess mortality in pandemic

Age-specific excess mortality in pandemic

Excess mortality as % of expected mortality based on pre-pandemic trend

- Different impact by country and by year
- Some mortality gain in 2020/2021 in Singapore, Japan, Korea and Malaysia
- Younger ages had worse %-wise excess mortality than older ages in many countries
- Japan experienced the least impact overall

Various studies on estimated excess deaths

Number of excess deaths in 000's

- Excess death estimates highly dependent on measurement of expected deaths
- Many models estimate both actual and expected
- Lancet paper groups 2020 and 2021 result together
- Results from GAIP study are reasonably close to WHO's estimate
- The Economist estimates very significant excess deaths in Indonesia in 2021 and 2022

Excess deaths vs. healthcare access and quality

Average annual excess deaths per 1,000 population vs. Healthcare Access and Quality (HAQ) index

- - Indication of negative correlation between excess deaths and HAQ index
 - England & Wales seems to be an outlier
 - Not adjusted for different age mix
 - Only a preliminary exploration, study at bigger scale needed to draw any conclusion

Simulation to forecast long-term mortality impact

Monte Carlo simulation of future mortality rates under 6 scenarios

- Scenario 1: COVID-19 mortality shock disappears completely and **immediately**, no new pandemic occurs
- Scenario 2: COVID-19 mortality shock continues indefinitely, no new pandemic occurs
- Scenario 3: COVID-19 mortality shock subsides gradually and indefinitely, no new pandemic occurs
- Scenario 4: COVID-19 mortality shock subsides gradually but only for 4 years, no new pandemic occurs
- Scenario 5: Scenario 3, plus a new pandemic occurs with a probability of 0.01 each year
- Scenario 6: Scenario 3, plus a new pandemic occurs with a probability of 0.05 each year

Simulation to forecast long-term mortality impact

Monte Carlo simulation of future mortality rates under 6 scenarios

- Under each scenario, generate 10,000 Monte Carlo simulation sample paths of death rates
- Calculate statistics such as life expectancy for each sample path

Period life expectancy at age 30 in year 2032

E&W

- Indication of overall mortality level in 2032
- Scenarios assuming arrival of new pandemic (scenario 5 and 6) show significant left-tail risk (shorter life expectancy)
- Scenario 3-6 are plausible given historical long-term volatility: first and third quartile in Scenario 3-6 are within the data range of Scenario 1.
- Variation between scenarios dictated by magnitude of COVID mortality shock in each country

Cohort life expectancy at age 30 in year 2032

- Indication of future lifetime of age 30 in 2032
- Less variation among scenarios than period life expectancy due to pandemic mortality shock gradually absorbed by future mortality improvement
- Larger variance than period life expectancy due to randomness in future mortality improvement
- Significant longevity risk in Singapore, Japan, Korea and E&W

Cohort life expectancy at age 65 in year 2032

 Smaller variance than cohort life expectancy at age 30 due to much shorter projection horizon

Implications, recommendations and limitations

Experience monitoring and data collection

- Great variation in COVID-related mortality shock and long-term mortality trend among different countries
- Mortality trend can change rather quickly in Asian countries so close monitoring is crucial
- Embrace new technology and collaboration

Mortality modelling

- The stochastic mortality model presented in this study can be used to quantify and estimate COVID-related impact
- Extension can be made to quantify other short-term mortality shocks

Risk Management

- Mortality impact during COVID may have significant profitability impact
- Example: % change in EV at YE 2022 of Term 20 life insurance contract of age 45

Risk Management

- Need for studying profitability impact under different scenarios
- Incorporate insights from COVID-19 impact into scenario analysis and stress testing
- Maintain a diverse portfolio
- Improve access and quality to healthcare
- Longevity risk remains critical

Protection gap

- Mortality protection gap: material impact on mortality of younger age group in Indonesia and Malaysia
- Longevity protection gap: long life expectancy in developed economies in Asia

Morbidity impact

- Impact from the pandemic and long-COVID
- Future study with industry collaboration necessary

Health protection gap: better health protection likely be correlated with better mortality outcome during pandemic

Limitations

- Study based on population rather than insured lives data
- Study based on data up to 2022, longer-term monitoring necessary
- Morbidity impact not considered

Limitation of our stochastic mortality model: deterministic mortality shock and identical pattern in future pandemics

Limitation of modelling for quantifying excess deaths: not suitable for estimating excess deaths in small time interval

Lee-Carter model

- $m_{x,t}$ denotes central death rate at age x in year t
- The model: $\log m_{x,t} = a_x + b_x k_t + \xi_{x,t}$
- k_t follows a random walk with drift such that $k_t = k_{t-1} + \mu + \epsilon_t$, $\epsilon_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$
- a_x : long-term average log central death rate of age x over data period
- k_t : captures overall level of mortality improvement over time, a.k.a. the mortality index
- b_x : reflects age x's sensitivity to changes in k_t
- Constraints to ensure uniqueness of parameter value: $\sum_{x} b_{x} = 1$, $k_{t} = 0$

Lee-Carter model

- Concise form with intuitive interpretation
- Captures overall long-term trend, age-specific characteristic and random fluctuation
- Does not capture any shock
- Does not capture any cohort effect
- Two-stage parameter estimation process

Lee-Carter model

Estimated a_x with pre-COVID data

Lee-Carter model

Estimated b_x with pre-COVID data

Lee-Carter model

Estimated k_t with pre-COVID data

Two-parameter-level model

- alike effects." Annals of Actuarial Science 16.3 (2022): 453-477.
- The model: $\log m_{x,t} = a_x + b_x k_t + c_{x,t} \pi_t \mathbf{1}_{t \in \mathcal{T}}$
- $\mathbf{1}_{t\in T}$ is an indicator function with value of 1 if year t is a pandemic year
- π_t captures time specific overall mortality shock in pandemic
- $c_{x,t}$ captures age specific mortality impact, which also varies by time, relative to π_t
- Constraints to ensure uniqueness of parameter value: $\sum_{x} b_{x} = 1$, $k_{t} = 0$, $\sum_{x} c_{x,t} = 1$.

• Zhou, Rui, and Johnny Siu-Hang Li. "A multi-parameter-level model for simulating future mortality scenarios with COVID-

Age-specific excess mortality in pandemic

Excess mortality as % of expected mortality based on pre-pandemic trend

- Different impact by country and by year
- Some mortality gain in 2020/2021 in Singapore, Japan, Korea and Malaysia
- Younger ages had worse %-wise excess mortality than older ages in many countries
- Japan experienced the least impact overall

Parameter estimation

- Maximize penalized quasi-likelihood (PQL), $g(\theta)$, for estimating $\theta \in \{a_x, b_x, k_t, c_{x,t}, \pi_t, \mu\}$
- Maximize approximate profile quasi-likelihood function, $h(\theta)$, for estimating $\theta \in \{\sigma\}$
- Iterative process using Newton's method
- PQL penalizes deviation from a multivariate normal distribution of **k**
- Capable of disentangling COVID mortality shock and fluctuation in long-term mortality improvement

Parameter estimation

Algorithm for parameter estimation

initialize: Initialize parameter values as

- 1. Set $a_{x_{prev}}$ = estimated a_x using the Lee-Carter model;
- 2. Set $b_{x_{prev}} = c_{x,t_{prev}} =$ estimated b_x using the Lee-Carter model;
- 3. Set $k_{t_{prev}} = \pi_{t_{prev}}$ =estimated k_t using the Lee-Carter model;
- 4. Set μ_{prev} = estimated μ using the Lee-Carter model;
- 5. Set σ_{prev} = estimated σ using the Lee-Carter model;

$$6. \ \delta = \eta = 1;$$

- 7. Update $g_{prev}(\theta) \leftarrow g(\theta)$;
- 8. Update $h_{prev}(\theta) \leftarrow h(\theta)$;

while $\delta > 0.0001 \, do$

while $\eta > 0.0001$ do

for $\theta \in \{a_x, b_x, k_t, c_{x,t}, \pi_t, \mu\}$ do Update $\theta_{curr} \leftarrow \theta_{prev} - \frac{\frac{\partial}{\partial \theta}g(\theta_{prev})}{\frac{\partial^2}{\partial \theta^2}g(\theta_{prev})}$ end Update $\eta = g(\theta_{curr}) - g_{prev}(\theta)$ Update $\theta_{prev} \leftarrow \theta_{curr}$ Update $g_{prev}(\theta) \leftarrow g(\theta_{curr})$

end

Update $\sigma_{curr} \leftarrow \sigma_{prev} - \frac{\frac{\partial}{\partial \sigma} h(\sigma_{prev})}{\frac{\partial^2}{\partial \sigma^2} h(\sigma_{prev})}$ Update $\delta = h(\sigma_{curr}) - h_{prev}(\sigma)$ Update $\sigma_{prev} \leftarrow \sigma_{curr}$ Update $h_{prev}(\sigma) \leftarrow h(\sigma_{curr})$

end

Parameter estimation

Estimated parameters

Simulation using two-parameter-level model

Simulation model \bullet

$$\log m_{x,t} = a_x + b_x k_t + \sum_{i} \left(c_{x,t}^{(i)} \pi_t^{(i)} \mathbf{1}_{T_1^{(i)} \le t \le T_k^{(i)}} + c_{x,T_k}^{(i)} \pi_{T_k}^{(i)} \gamma^{g(t,T_k^{(i)})} \mathbf{1}_{t > T_k^{(i)}} \right)$$

$$pandemic phase \quad endemic phase$$

$$where \mathbf{1}_t = \begin{cases} 1 \text{ with probability } p \\ 0 & \text{otherwise} \end{cases} \text{ for any } t > T_k^{(1)}$$

$$= a_{x} + b_{x}k_{t} + \sum_{i} \left(c_{x,t}^{(i)} \pi_{t}^{(i)} \mathbf{1}_{T_{1}^{(i)} \leq t \leq T_{k}^{(i)}} + c_{x,T_{k}}^{(i)} \pi_{T_{k}}^{(i)} \gamma^{g(t,T_{k}^{(i)})} \mathbf{1}_{t > T_{k}^{(i)}} \right)$$

$$pandemic phase endemic phase where \mathbf{1}_{t} = \begin{cases} 1 \text{ with probability } p \\ 0 & \text{otherwise} \end{cases} \text{ for any } t > T_{k}^{(1)}$$

Scenario	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Parameter setup	i = 1, p = 0, $\gamma = 0,$ $g\left(t, T_k^{(i)}\right) = t - T_k^{(i)}$	i = 1, p = 0, $\gamma = 1,$ $g\left(t, T_k^{(i)}\right) = t - T_k^{(i)}$	$i = 1, p = 0, \\ 0 < \gamma < 1, \\ g(t, T_k^{(i)}) = t - T_k^{(i)}$	i = 1, p = 0, $0 < \gamma < 1,$ $g(t, T_k^{(i)})$ $= min(t - T_k, 4)$	$i \ge 1, p = 0.01, \\ 0 < \gamma < 1, \\ g(t, T_k^{(i)}) = t - T_k^{(i)}$	$i \geq 1, p = 0.05$ $0 < \gamma < 1,$ $g\left(t, T_k^{(i)}\right) = t - T_k^{(i)}$

Simulation using two-parameter-level model

Algorithm for simulation under each scenario

input: Estimated values of a_x , b_x , k_{t_n} , c_{x,t_n} , π_{t_n} , μ , σ and p;

N: number of simulation samples;

T: number of years to forecast in simulation;

initialize: Set $\mu = [\mu, 2\mu \dots, T\mu]$;

Set the (i, j)-th entry of the $T \times T$ variance-covariance matrix V to be $V_{ij} = (\min(i, j) - 1)\sigma^2$;

for i = 1 to N do

Randomly sample z_i from $MVN(\mu, V)$

Set $\mathbf{k}_i = [k_{t_n+1}, k_{t_n+2}, \dots, k_{t_n+T}]' = k_{t_n} + \mathbf{z}_i;$

Randomly sample $\mathbf{1}_{i,t}$ for $t = t_n + 1, ..., t_n + T$ from i.i.d. Bernoulli(p);

Compute $\log m_{x,t}$ for $t = t_n + 1, ..., t_n + T$;

Compute $q_{x,t}$ for $t = t_n + 1, \dots, t_n + T$;

Compute mortality indices for $t = t_n + 1, ..., t_n + T$;

end

Forecast long-term trend of mortality improvement

- Long-term trend of mortality improvement: dictated by parameter μ in the model
- Steep decrease in mortality rates in Korea and Singapore since 1980's, but how will such trend evolve in future?
- Deceleration in Japan's mortality improvement after 1990's
- national population
- Example of countries "avant-garde" status: Sweden since 1960's, Japan since 1990's
- In simulation study: for Singapore, Japan and Korea, forecast with μ estimated from Japan's experience since 1990

"Avant-garde" status in mortality improvement: overall level of mortality equals the minimum achieved at that time by any

Forecast long-term trend of mortality improvement

Period life expectancy at birth

Forecast long-term trend of mortality improvement

Period life expectancy at age 30

Appendix

Living Lab report

• <u>https://www.gaip.global/wp-content/uploads/2023/07/COVID-19-Mortality-Impact-in-Asia-.pdf</u>

Tools: R codes and tables

<u>https://www.gaip.global/library-resource/tools-to-assess-mortality-impact-of-covid-19/</u>

